Remote Sensing Laser Survey and Imagery Technologies for Expediting Airport Mapping and Asset Management Applications

2014 FAA Worldwide Airport Technology Transfer Conf,

Waheed Uddin, PhD, PE

Professor and Director CAIT cvuddin@gmail.com

@drwaheeduddin

Department of Civil Engineering

The University of Mississippi

http://www.olemiss.edu/projects/cait/ncitec/

Background

- An Obstacle/Obstruction Identification Surface (OIS) defines SAFE altitudes for approaches/landings and departures.
- The Next Generation Air Transportation System (NextGen)
- Satellite based airport flight procedures (>40% airports)
- The FAA standards for identifying obstructions to navigable air space apply to:
 - hilly terrain, natural-growth objects (tall trees), existing and planned manmade objects
 - (tall buildings, cell and TV towers, water towers, power transmission towers, tall electric light poles, windmills), and temporary construction-related objects, cranes.

Objectives

- To present airport application of Airborne LIDAR based obstruction survey methods and their benefits
- To show 3D visualization of airport infrastructure using imagery data for asset management

ACRP 03-01 Project

http://144.171.11.40/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=135

Light Detection and Ranging (LIDAR) Deployment for Airport Obstructions Surveys

Project Period: January 30, 2007 – December 31, 2009

TRB Project Manager: Dr. Andrew Lemer

TRB Oversight: ACRP03-01 Panel & FAA Reps

PI: Waheed Uddin cvuddin@olemiss.edu

Professor of Civil Engineering, University of Mississippi

- **Co-PI: Christopher Parrish** Chris.Parrish@noaa.gov
 - Research Scientist, NOAA National Geodetic Survey (NGS)
- Other NGS Staff: Jason Woolard, Cartographer
- Consultants: Frank Scarpace, Alan Vonderohe, Bill Gutelius,

David Ward, Robert Hutchins

Subcontractors: IAVO Research and Scientific @drwaheeduddin

OIS Surveys

Applicable survey standard documents - FAA
 AC 150/5300-16 A "General Guidance and Specifications for Aeronautical Surveys: Establishment of Geodetic Control and Submission to the National Geodetic Survey"
 September 15, 2007

AC 150/5300-17 B ": Standards for Using Remote Sensing Technologies in Airport Surveys" September 30, 2011 Identifies the requirements for and how to collect the required imagery. Allows LIDAR survey

AC 150/5300-18 B "General Guidance And Specifications for Submission of Aeronautical Surveys to NGS: Field Data Collection And Geographic Information System (GIS) Standards" May 21, 2009

OIS Surveys

AC 150/5300-18B, Table 2.1 provides information on:
 Two types of "obstruction surveys"
 1) Vertically Guided 2) Non-Vertically Guided

Vertically guided (VG) instrument approaches such as ILS, PAR, MLS, LPV, TLS, RNP and Baro/VNAV

Visual or Non-Vertically guided (NVG) operations (Lateral Navigation (LNAV), Localizer Performance (LP), VOR, NDB, Localizer, Localizer Directional Aid (LDA), etc.)

Remote Sensing Survey Technologies

The term LASER is an acronym for:

L ight

A mplification by

S timulated

E mission of

R adiation

The term LIDAR is an acronym of "LIght Detection And Ranging."

Traditional Aerial Photography/ Photogrammetry

Flying at high to low height above Ground

Low Flying at 730 m above ground for high resolution

Remote Sensing and Geospatial Analysis for planning & Engineering Design

Workflow for Topographic Mapping & Terrain Modeling

Airborne LIDAR Survey

All LIDAR points without vegetation removal

Bare-earth Surface

Traditional Photogrammetry

Key Differences of LIDAR and Traditional Photogrammetry for Obstruction Surveys

Key Parameters	Aerial Photography/ Photogrammetry	Airborne LIDAR	
Operating Constraints	No operations during nighttime , poor visibility	Operations any time during day and night	
Seasonal Restrictions	Operational only during leaf-on period in wooded areas	Operational for more periods throughout year	
Environmental Effects	Subject to flight rules of visibility & ceiling	Subject to flight rules of visibility & ceiling	
Terrain & Built-up Area Constraints	Can be inaccurate in extremely wooded areas, problem with shadow areas and sun angle	More reliable data for canopy and ground areas, problem with shadow areas	

Reliable Hardware / Analysis Software: Available Commercially

Key Differences Between LIDAR and Photogrammetry

- Traditional photography provides a **permanent photo** record of the terrain, which is a clear advantage.
- LIDAR needs a recent georeferenced imagery of the study area to identify the types of features and potential obstacles and verify the objects automatically extracted from computational analysis.
- LIDAR is **not constrained by operating limitations** of traditional photography method relative to nighttime and seasonal operating constraints.
- Photogrammetry is **more time consuming**; manual effort for stereoscopic post-processing; requires **seed** elevation.
- LIDAR is **computationally efficient**; less time consuming; and **easy to reanalyze** for different obstacle free imaginary surfaces.

LIDAR Points Density vs. Flying Altitude for the Assumed Sensor Data

A nadir-looking LIDAR setting of 33 kHz PRF; 125 knots aircraft speed; a 7° or 20° scan angle

LIDAR-derived digital surface model

Stafford Regional Airport (NGS Project)

Airports with LIDAR Obstruction Survey

Airborne LIDAR for Obstruction Survey, Anoka County-Blaine Airport, Minnesota

Anoka County-Blaine Airport

LIDAR Mission Planning and Flightlines

LIDAR Survey-based Obstruction Mapping, Anoka County-Blaine Airport, Minnesota

OPTIMAL GEOMATICS, Inc. LIDAR Methodology

LIDAR Workflow for Airport Obstruction Analysis

(Courtesy of Optimal Geomatics, Inc.)

LIDAR Obstruction Identification

LIDAR Intensity Images

Conventional survey and photogrammetry provide data only discreet locations selected by operator; and LIDAR computerized workflow provides survey points over entire survey area features

• (obstacles and terrain)

LIDAR Point Spacing Specifications

LIDAR survey supplemented with aerial photography (digital or film)

Maximum Across-	Maximum Along-	Maximum Vertical	Corresponding
Track Horizontal	Track Horizontal	Point Spacing (tilted	Point Density
Point Spacing	Point Spacing	Sensors only)	
0.18 m	0.18 m	0.50 m	30 points/m ²

Airborne LIDAR Survey Specification Posted on NGS Web Site www.ngs.noaa.gov/RSD/AirportSOW.pdf

ACRP 03-01 Project Info

http://144.171.11.40/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=135

Research Results Digest 10

Advances In LIDAR Technology for Airport Surveying

- Full-waveform LIDAR systems employing a small-footprint.
- 252% more points on vertical objects of interest than the point clouds generated from the discrete-return data (NGS, Parrish)
- Maximum PRF of above 150 kHz to 500 kHz for nine of the reviewed above 70 kHz PRF systems.
- Maximum point density in a single pass ranging 11 to 18 per sq m.

(Assuming 75 m/s aircraft speed, ±20° scan angle, 70Hz scan rate, 500m ~5000ft flying height above ground level, and maximum system PRF)

• For 100 kHz or higher PRF with appropriate flight mission parameters and overlapping flightlines it is possible to achieve denser point spacing up to 30 points per sq m.

LIDAR Survey Data Processing

Three-Dimensional Georeferenced Point Cloud Data **Intensity Data**

Obstruction and Terrain Mapping, CAD, Geospatial software

(fusion with imagery)

Airport Obstruction Chart, Airport Layout Plan, eALP, Airport GIS, Engineering Analysis, and Asset Management Applications

3D Feature Extraction For Airport Infrastructure Assets

- Airport assets can be visualized in a **GIS map** as planimetric features using georeferenced aerial imagery and orthophoto for producing eALP.
- The planimetric can be further used to create **built and non-built surface map** to estimate heat-island effects and sustainability dimensions.

• Geospatial mapping of **3D features** can enhance asset inventory.

GeoGenesisTM Photogrammetric Software Suite

Louisville Intl. Airport: 3D Features Extracted in GoogleEarth

Save the date

2015 IJPC – 2nd International

Journal of Pavement Conference

ISSN 1676-2797 © Copyright IJP Weimar – Germany

September 07–09, 2015

Dr. Jürgen Hutschenreuther

jh@hutschenreuther.de

http://www.ijpavement.com/